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Bucharest-Măgurele, Romania
3 Centre for Advanced Studies in Physics, Romanian Academy, Calea 13 Septembrie 13,
R-76117, Bucharest, Romania

Received 27 November 2000
Published 24 August 2001
Online at stacks.iop.org/JPhysA/34/6969

Abstract
We study the entanglement properties of two-mode Gaussian light emerging
from a generic SU(1, 1) interferometer. Our tool is the two-mode characteristic
function which is determined by the 4 × 4 covariance matrix. For an initial
product of two mixed single-mode Gaussian states we investigate the output
two-mode covariance matrix. Its structure displays the noise properties of
the reduced states as well as the correlations between modes. Classicality
of the output two-mode state is characterized by the existence of the Glauber–
SudarshanP representation. For testing separability we apply the Peres–Simon
criterion requiring preservation of the positivity of the density matrix under
partial transposition. Since inseparability entails nonclassicality, the threshold
gain above which nonclassicality of the output state becomes manifest is lower
than that allowing for its inseparability. We find that only for a thermal input do
nonclassicality and inseparability of the output have the same threshold gain.

PACS numbers: 03.67.-a, 03.65.Ta

1. Introduction

The statistical properties of two-mode light generated in several well-known processes as
nondegenerate parametric amplification and degenerate four-wave mixing were intensely
studied in order to find evidence for the quantum nature of light. The two-mode radiation
resulting from these processes has nonclassical properties such as squeezing and strong
correlations between the two beams. A unified treatment of four-port devices having as
active elements nondegenerate parametric amplifiers or degenerate four-wave mixers has been
initiated by Yurke et al [1]. In fact, since such a device performs Bogoliubov transformations
of the amplitude operators, they have termed it as a SU(1, 1) interferometer. In this paper
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we study the way in which a two-mode SU(1, 1)-interferometer acts on mixed squeezed-state
inputs. This problem meets the recent interest in quantum information processing of Gaussian
field states [2,3]. Quantum communication experiments in the near-infrared and optical domain
are possible using Gaussian states at the input ports of active devices modelled by a SU(1, 1)
interferometer [4]. Moreover, it has recently been understood that testing for the preservation
of nonlocal entanglement in continuous-variable quantum teleportation [2] involves the need
to formulate separability criteria for two-mode Gaussian states [5, 6]. Therefore, we focus
on the properties of the two-mode Gaussian output state of the SU(1, 1) interferometer when
the input is a product of mixed one-mode Gaussian states. We investigate the conditions for
classicality (existence of the P representation) [7] and separability [8] for the output state.
Depending on the input state and the gain of the interferometer, the two-mode output state may
be either classical, or nonclassical and still separable, or inseparable. We find gain conditions
for reaching all these situations.

The paper is organized as follows. In section 2, we give a brief description of mixed
two-mode Gaussian states in terms of their characteristic functions (CFs). The properties
of the two-mode covariance matrix studied in our paper are determined by the generalized
form of the Robertson–Schrödinger uncertainty relation [5, 9–11]. In section 3 we find the
SU(1, 1) transformation of the covariance matrix of the two-mode input state. The action of
the interferometer imposes a squeezing operation with real parameter 2r and phase shiftings for
the reduced states. The two-mode output state is studied in section 4. We point out here several
properties that arise from the explicit SU(1, 1) transformation found in section 3. In section 5
we derive the gain conditions for emergency of nonclassicality in the case of a noisy input. Then
we apply the necessary condition for separability proposed by Peres [12]: the matrix obtained
by partial transposition of the density matrix should be non-negative. Recently, Simon [5]
has proved that Peres’ statement is also a sufficient condition for separability of two-mode
Gaussian states. We find here the gain values above which the initial separable state becomes
entangled under the action of the interferometer. Finally, we prove that the violation of the
2-entropy inequality [13, 14] is a sufficient but not a necessary condition for inseparability of
the Gaussian states discussed in this paper.

Section 6 summarizes our conclusions.

2. Two-mode Gaussian states

Although the properties of quantum Gaussian states have been largely investigated over the
years [5,9–11,15–24], we find it useful to point out here a CF description. We deal only with
the two-mode case. Note that a general treatment of multimode Gaussian states built on the
theory of canonical symplectic forms was given in [5, 9–11, 15, 20, 24].

2.1. Two-mode Gaussian states

We denote by a1 and a2 the annihilation operators of the two modes. The two-mode CF is
defined as the expectation value of the two-mode Weyl displacement operator

χ(λ1, λ2) = Tr [ρD1(λ1)D2(λ2)] (2.1)

with D(λ) = exp (λa† − λ∗a).
The CF of a Gaussian state is

χ(λ1, λ2) = exp [−(A1 + 1
2 )|λ1|2 − 1

2B
∗
1λ

2
1 − 1

2B1(λ
∗
1)

2 + C∗
1λ1 − C1λ

∗
1]

× exp [−(A2 + 1
2 )|λ2|2 − 1

2B
∗
2λ

2
2 − 1

2B2(λ
∗
2)

2 + C∗
2λ2 − C2λ

∗
2]

× exp [−Fλ∗
1λ2 − F ∗λ1λ

∗
2 + Gλ∗

1λ
∗
2 + G∗λ1λ2]. (2.2)
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By differentiating the two-mode normally ordered CF

χ(N)(λ1, λ2) := 〈exp(λ1a
†
1) exp(−λ∗

1a1) exp(λ2a
†
2) exp(−λ∗

2a2)〉 (2.3)

with respect to λ1, λ
∗
1, λ2, λ

∗
2 at the point λ1 = λ∗

1 = λ2 = λ∗
2 = 0, one can obtain the

expectation values of interest for the reduced states and their correlations.
Here we deal only with undisplaced Gaussian states, i.e. C1 = C2 = 0. A meaningful

expression of the CF (2.2) is obtained by using the real variables introduced by λ1 =
1√
2
(x2 − ix1); λ2 = 1√

2
(x4 − ix3). The CF (2.2) is written compactly as

χ(x) = exp {− 1
2x

T Vx} (2.4)

with xT the row vector (x1 x2 x3 x4). xT denotes the transpose of the column vector x. V is
the real, symmetric and positive 4 × 4 covariance matrix. It has the following block structure:

V =
( V1 E

ET V2

)
(2.5)

where V1, V2 and E are 2 × 2 matrices:

• V1 and V2 are covariance matrices for the reduced one-mode states. They contain the
variances of the canonical operators (j = 1, 2)

qj = 1√
2
(aj + a†

j ) pj = 1√
2i
(aj − a

†
j ). (2.6)

From the CF (2.2) we find the structure of the one-mode covariance matrices (j = 1, 2):

σ(qj , qj ) = Aj + 1
2 − R(Bj ) (2.7a)

σ(pj , pj ) = Aj + 1
2 + R(Bj ) (2.7b)

σ(qj , pj ) = σ(pj , qj ) = −I(Bj ). (2.7c)

The reductions are squeezed thermal states (STSs) as expected. See [16,17,25] for a full
account of the properties of one-mode STSs.

• The matrix E that we term as the entanglement matrix, contains the correlations between
modes expressed by the variances

σ(q1, q2) := 〈�q1�q2〉 = R(F ) + R(G) (2.8a)

σ(q1, p2) := 〈�q1�p2〉 = I(G)− I(F ) (2.8b)

σ(p1, q2) := 〈�p1�q2〉 = I(G) + I(F ) (2.8c)

σ(p1, p2) := 〈�p1�p2〉 = R(F )− R(G). (2.8d)

A different but equivalent block form of the multimode covariance matrix was adopted
in [10,21,24], where the correlations between coordinates are written in a block matrix, another
block contains correlations between momenta and the third one contains correlations between
coordinates and momenta.

The properties of the two-mode covariance matrix (2.5) are determined by the generalized
form of the Robertson–Schrödinger uncertainty relation [9–11, 21, 24]. We follow here the
treatment recently exposed in [5,11] which is in accordance with the way we have written the
covariance matrix, equation (2.5): the canonical operators of the two modes are arranged into
the four-dimensional row vector ξ̂ = (q1 p1 q2 p2). The commutation relations can be written
compactly:

[ξα, ξβ] = i�αβI α, β = 1, 2, 3, 4. (2.9)
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The constants �αβ fill a 4 × 4 matrix with the structure

� =
( J 0

0 J
)

(2.10)

where J is the 2 × 2 nondiagonal matrix

J =
(

0 1
−1 0

)
(2.11)

having the property J 2 = −I2, with I2 the 2 × 2 identity matrix.
Now, the Robertson–Schrödinger uncertainty relation in the two-mode case requires the

non-negativity of the matrix

T := V +
i

2
� � 0. (2.12)

Equation (2.12) is a restriction that the covariance matrix V of any state has to satisfy. The
condition (2.12) acts on the reduced modes too. We have

det V1 � 1
4 det V2 � 1

4 (2.13)

in accordance with the uncertainty principle for the one-mode states.
A simple calculation using the Schur formula applied to the matrix (2.5),

det V = det V1 det[V2 − ET V−1
1 E] (2.14)

gives first

det V = det V1 det V2 + [det E]2 − tr[V1(adj E)T V2 adj E] (2.15)

where adj E denotes the adjoint matrix of E , i.e. the transpose of its cofactor matrix. Similarly,
the physical requirement (2.12) can be written in a form which is invariant under independent
local canonical transformations4

det V1 det V2 + ( 1
4 − det E)2 − tr[V1(adj E)T V2 adj E] � 1

4 [det V1 + det V2]. (2.16)

The elimination of the local invariant tr[V1(adj E)T V2 adj E] between equations (2.16)
and (2.15) yields a simpler explicit form of the uncertainty principle (2.12)

det V − 1
4 [det V1 + det V2 + 2 det E] + 1

16 � 0. (2.17)

From the degree of purity

Tr (ρ2) = 1

π2

∫
d4x |χ(x)|2 = 1

4
√

det V
� 1 (2.18)

we find that the determinant of the covariance matrix has to satisfy

det V � 1
16 . (2.19)

4 Simon [5] found this invariant form by local-transforming the covariance matrix to obtain a simpler form in which
the reduced 2 × 2 covariance matrices and the entanglement matrix are diagonal. In [35] this transformed matrix was
called the standard form I.
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3. The SU (1, 1)-interferometer

3.1. Solution for a Gaussian input

We will apply the above formalism of the Gaussian CF to the study of the way a two-
mode SU(1, 1)-interferometer acts on squeezed-states inputs. A two-mode SU(1, 1)-
interferometer [1, 26] models several phase-sensitive elements as nondegenerate parametric
amplifiers [27–29] and degenerate four-wave mixers [30]. In their paper [1], Yurke et al
considered the SU(1, 1)-interferometer as a device with two input ports described by the
annihilation operators a1 and a2 and two output ports with the annihilation operators denoted
by b1 and b2. In the Schrödinger picture the output density operator of the two-mode system
is [1, 26]

ρout = S†ρinS. (3.1)

Here S stands for the active action of the four-port device, and, in the most general case,
consists of three successive operations:

S = exp (−iφKz) exp (−i2rKy) exp (−iψKz) (3.2)

where:
(a) exp (−iψKz) is a rotation of an angle ψ generated by the operator Kz = 1

2 (a
†
1a1 +

a
†
2a2). This unitary transformation produces a common phase shift of the annihilation

operators [31, 32]

exp (−iψKz)a1,2 exp (iψKz) = exp

(
i
ψ

2

)
a1,2. (3.3)

(b) exp (−i2rKy) is a two-mode squeeze operator [31–33] with Ky = i
2 (a1a2 − a

†
1a

†
2)

and (2r) a real squeeze parameter. The transformed amplitude operators are

exp (−i2rKy)a1,2 exp (i2rKy) = cosh ra1,2 + sinh ra†
2,1. (3.4)

(c) exp (−iφKz) is another rotation of angle φ. Note that Ky and Kz are two generators
of the SU(1, 1) representation.

In [26], the transformation of the wavefunction in the position and momentum
representations was written using the explicit expression of the active operator (3.2). However,
such a treatment is useful only in the case of a pure two-mode state input. Here we use the CF
introduced in equation (2.1). We insert equation (3.1) in the definition (2.1) and get successively

χout(λ1, λ2) = Tr [S†ρinSD1(λ1)D2(λ2)]

= Tr [ρinSD1(λ1)D2(λ2)S†]. (3.5)

Now, for the sake of simplicity, we restrict ourselves to the case when the squeezing operation
is accompanied by a unique rotation of angle φ. Consequently we get

χout(λ1, λ2) = χin

{
[λ1 cosh r − λ∗

2 sinh r] exp

(
− i

φ

2

)
,

[−λ∗
1 sinh r + λ2 cosh r] exp

(
− i

φ

2

)}
. (3.6)

As a consequence of equation (3.6), an input two-mode Gaussian state remains Gaussian after
SU(1, 1) interaction. From now on we consider a Gaussian input product-state,

χin(λ1, λ2) = χ1(λ1)χ2(λ2)

= exp[−(A1 + 1
2 )|λ1|2 − 1

2B
∗
1λ

2
1 − 1

2B1(λ
∗
1)

2]

× exp[−(A2 + 1
2 )|λ2|2 − 1

2B
∗
2λ

2
2 − 1

2B2(λ
∗
2)

2]. (3.7)
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We look at equations (3.6) and (3.7) and write down the coefficients of the two-mode output
CF which is of the type (2.2):

A′
1 + 1

2 = (A1 + 1
2 )(cosh r)2 + (A2 + 1

2 )(sinh r)2 (3.8a)

A′
2 + 1

2 = (A1 + 1
2 )(sinh r)2 + (A2 + 1

2 )(cosh r)2 (3.8b)

B ′
1 = B1 exp (iφ)(cosh r)2 + B∗

2 exp (−iφ)(sinh r)2 (3.8c)

B ′
2 = B∗

1 exp (−iφ)(sinh r)2 + B2 exp (iφ)(cosh r)2 (3.8d)

F = − 1
2 [B1 exp (iφ) + B∗

2 exp (−iφ)] sinh(2r) (3.8e)

G = 1
2 (A1 + A2 + 1) sinh(2r). (3.8f)

As shown in section 3, the covariance matrix can be explicitly written in block form (2.5) by
employing equations (2.7) and (2.8). In this case we get the following elements of the basic
matrices V1, V2 and E .

• The reduced output mode 1

σ(q1, q1) = σ0(q1, q1)(cosh r)2 + σ0(q2, q2)(sinh r)2 (3.9a)

σ(p1, q1) = σ0(p1, q1)(cosh r)2 − σ0(p2, q2)(sinh r)2 (3.9b)

σ(p1, p1) = σ0(p1, p1)(cosh r)2 + σ0(p2, p2)(sinh r)2. (3.9c)

• The reduced output mode 2. We get similar variances to those given in equations (3.9) by
interchanging overall the subscripts 1 and 2.

• The entanglement matrix E
σ(q1, q2) = 1

2 sinh(2r)[σ0(q1, q1) + σ0(q2, q2)] (3.10a)

σ(p1, p2) = − 1
2 sinh(2r)[σ0(p1, p1) + σ0(p2, p2)] (3.10b)

σ(q1, p2) = − 1
2 sinh(2r)[σ0(q1, p1)− σ0(q2, p2)] (3.10c)

σ(p1, q2) = −σ(q1, p2). (3.10d)

In equations (3.9) and (3.10), we have denoted by σ0 the variances of the input single-mode
states with modified phases:

ϕ′
1 = ϕ1 + φ ϕ′

2 = ϕ2 + φ. (3.11)

For example,

σ(p1, p1) = [A1 + 1
2 + R(B1eiφ)](cosh r)2 + [A2 + 1

2 + R(B∗
2 e−iφ)](sinh r)2. (3.12)

We see that the phases of the output states are controlled by the phase φ introduced by the
interaction.

4. The two-mode output state. Generalities

We point out that the degree of purity of the input product state, equation (3.7), is left unchanged
by the unitary active actions (3.2) of the SU(1, 1) interferometer. Consequently we have

det V = det V (0) = det V (0)
1 det V (0)

2 (4.1)

which means that the degree of purity of the two-mode state depends only on the thermal noise
in the input single-mode states.

Several interesting properties of the matrices V1,V2 and E arise from the explicit
dependence of their elements, equations (3.9) and (3.10) of the corresponding input ones.
We have

det V1 = det V (0)
1 (cosh r)2 − det V (0)

2 (sinh r)2 − detE (4.2a)

det V2 = det V (0)
2 (cosh r)2 − det V (0)

1 (sinh r)2 − detE (4.2b)
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where

det E = − 1
4 [sinh(2r)]2(0(p)(0(q). (4.2c)

In equation (4.2c) we have introduced the notations

(0(q) := σ0(q1, q1) + σ0(q2, q2) (4.3)

(0(p) := σ0(p1, p1) + σ0(p2, p2). (4.4)

We also obtain

tr V1 = tr V (0)
1 (cosh r)2 + tr V (0)

2 (sinh r)2 (4.5a)

tr V2 = tr V (0)
2 (cosh r)2 + tr V (0)

1 (sinh r)2. (4.5b)

In equations (4.2), we have expressed the local invariants for output modes as functions of the
similar input ones. The entanglement matrix explicitly occurs in these equations showing that
the correlations between modes modify the degree of mixing of the reduced states.

By applying the Robertson–Schrödinger uncertainty relation for the one-mode reduced
states, equation (2.13), in the rhs of equations (4.2) we get an important condition that the
entanglement matrix has to obey:

det V1,2 + det E � 1
4 . (4.6)

We can thus infer that, at least for pure two-mode states (equality in equation (4.6)), we must
have det E < 0.

5. The two-mode output state. Nonclassicality and inseparability

By definition, the density operator characterizing a separable state of a bipartite system can
be written as a convex combination of product states [8]:

ρ =
∑
i

piρ
(1)
i ⊗ ρ

(2)
i (5.1)

whereρ(1)i andρ(2)i are arbitrary local density operators. For a two-mode field state a continuous
convex combination is the well known diagonal Glauber–Sudarshan P representation [7]

ρ =
∫

d2γ1 d2γ2 P(γ1, γ2)|γ1〉〈γ1| ⊗ |γ2〉〈γ2| (5.2)

with d2γ = d(Rγ )d(Iγ ). Quantum states with negative or highly singular P representation
provide evidence for the quantum nature of light [34]. In contrast, since its discovery by
Glauber and Sudarshan [7], the existence of the P representation as a well behaved function
was related to the classicality of the quantum state. As P(γ1, γ2) is the Fourier transform of
the normally ordered CF, the condition for its existence,

V − 1
2I4 � 0 (5.3)

defines the classicality of a quantum two-mode Gaussian state. In equation (5.3) V is the
covariance matrix and I4 is the 4 × 4 unity matrix. The semipositiveness condition (5.3) is
evidently sufficient to ensure separability of the two-mode Gaussian state.

Even if the Glauber–Sudarshan P representation does not exist as a well behaved function
the two-mode state could still be separable. For example, a continuous convex combination
could be built by using a generalized P representation. We have

ρ =
∫

d2γ1 d2γ2 P
′(γ1, γ2)S1|γ1〉〈γ1|S†

1 ⊗ S2|γ2〉〈γ2|S†
2 (5.4)
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with S1,2 arbitrary squeeze operators. Further, we can write the equivalent equation

ρ ′ := S
†
1S

†
2ρS2S1

=
∫

d2γ1 d2γ2P
′(γ1, γ2)|γ1〉〈γ1| ⊗ |γ2〉〈γ2| (5.5)

from which we see that P ′(γ1, γ2) is the Glauber–Sudarshan P representation for the locally
transformed density operator ρ ′. The existence of a well behaved P ′(γ1, γ2) implies the
separability of the states described by ρ and ρ ′ because they are related by local unitary
transformations. However, if they exist, the local squeezing operations achieving such a
goal are not easily found. This is one of the reasons for the great interest in formulating
criteria for separability of Gaussian states [5, 35]. Another reason is the recent experimental
potential of teleporting quantum states of a single-mode electromagnetic field. Experimentally,
teleportation of a coherent state has been already reported [36]. Ingenious protocols for
teleporting nonclassical states have been recently proposed [2, 6, 37, 38]. In the protocols
described by Braunstein and Kimble [2] and Tan [6], the sender and the receiver of a single-
mode Gaussian state share an entangled two-mode squeezed state. Therefore, it is an interesting
issue to analyse separability properties of such states.

Recently, Simon [5] has examined the Peres–Horodecki separability criterion of
preservation of the non-negativity of the density matrix under partial transposition [12,39,40]
in the case of bipartite continuous-variable states. Originally, this criterion was proposed as
a necessary condition for separability in finite-dimensional Hilbert spaces [12]. For a two-
dimensional system, the Peres’ statement was proved to be a necessary and sufficient condition
for separability [39,40]. Interestingly, Simon found the same result in the infinite-dimensional
case of the two-mode Gaussian states5.

In the formalism of the CF that we have used here, partial transpose of the density matrix
with respect to only one subsystem, say mode 2, means

λ2 −→ −λ∗
2 (5.6)

in equation (2.2). It is easy to see that the operation (5.6) modifies only the determinant of the
entanglement matrix which changes its sign. Consequently, a separable state has to satisfy the
uncertainty principle, equation (2.17), written for ±| det E|. In this way, the Peres–Horodecki
statement which is a necessary condition for separability has the local-invariant form

det V − 1
4 [det V1 + det V2 + 2| det E|] + 1

16 � 0. (5.7)

To prove that the statement (5.7) is also sufficient for separability Simon has found
the explicit local squeezing and rotation operations that afforded the existence of the P

representation of the transformed state and thus, the separability of the original one.
In the following we analyse the conditions for nonclassicality (= nonexistence of the P

representation) and inseparability for the output of a SU(1, 1) interferometer. We consider
squeezed states at the two input ports. However, to have simpler analytical forms we take

ϕ′
1 = ϕ1 + φ = π ϕ′

2 = ϕ2 + φ = π. (5.8)

According to equation (5.8) the input states have the equal phases ϕ1 = ϕ2 = π−φ. Owing to
the phase choice (5.8), the input 2 × 2 covariance matrices are diagonal. For the signal mode
we get

σ0(q1, q1) = (n̄1 + 1
2 )e

−2r1 (5.9a)

σ0(p1, p1) = (n̄1 + 1
2 )e

2r1 (5.9b)

5 In [5], Simon has employed the Wigner function in order to formulate the Peres criterion in the bipartite Gaussian
case.
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while the elements of the idler covariance matrix are obtainable from equations (5.9) by
changing the index 1 to 2. In the above equations, we have denoted by r1 and r2 the squeeze
parameters of the noisy input states which have the thermal mean occupancies n̄1 and n̄2,
respectively.

According to equations (3.9) and (3.10), the output matrices V1,V2 and E are also diagonal.

5.1. P representation

The requirement (5.3) implies that the P representation exists when all the principal minors
of the matrix V − 1

2I4 are non-negative,

det(V − 1
2I4)

(l) � 0 l = 1, 2, 3, 4. (5.10)

We have first the conditions which ensure the existence of the P representation of the reduced
mode 1:

σ(q1, q1)− 1
2 � 0 σ(p1, p1)− 1

2 � 0 (5.11)

Further, if the reduced mode 1 has a well behaved P representation, then the whole system is
in a classical state provided that

[σ(q1, q1)− 1
2 ][σ(q2, q2)− 1

2 ] − [σ(q1, q2)]
2 � 0 (5.12a)

and

[σ(p1, p1)− 1
2 ][σ(p2, p2)− 1

2 ] − [σ(p1, p2)]
2 � 0. (5.12b)

The simultaneous conditions (5.11) and (5.12) via equations (3.9) and (3.10) are equivalent to
a double inequality that the gain of the interferometer has to satisfy

σ0(q2, q2) + 1
2

(0(q)
� (cosh r)2 �

(σ0(q2, q2) + 1
2 )(σ0(q1, q1) + 1

2 )

(0(q)
. (5.13)

We have two cases here depending on the classicality of the input state.

• If the input mode 1 were squeezed (σ0(q1, q1) <
1
2 ) the conditions (5.13) cannot be fulfilled

irrespective of the state of the input mode 2. Consequently, a squeezed (nonclassical) input
of the SU(1, 1) interferometer generates a nonclassical two-mode output state. Although
the reduced states become classical when a well known gain condition [41] is met, the
correlations induced between modes by the SU(1, 1) interaction preserve the nonclassical
character of the state.

• Recall that the classicality of the input reduced states implies σ0(q1, q1) > 1
2 and

σ0(q2, q2) >
1
2 . A classical input leads to a classical two-mode output provided that

the gain of the interferometer does not exceed the threshold

(cosh rc)
2 := (σ0(q2, q2) + 1

2 )(σ0(q1, q1) + 1
2 )

(0(q)
. (5.14)

If the input reduced states were thermal we find from equation (5.14) that the Glauber–
Sudarshan P representation ceases existing when

(cosh r)2 > (cosh rth)
2 := (n̄1 + 1)(n̄2 + 1)

n̄1 + n̄2 + 1
. (5.15)

We conclude that the existence of the output P representation depends on the degree of
squeezing of the input state. For sufficiently large values of the gain (above the value (5.14))
the output two-mode state generated by the SU(1, 1) interaction is nonclassical.
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5.2. Inseparability

We apply here the Peres–Horodecki criterion for separability in the local-invariant form (5.7)
derived by Simon. Taking into account equations (4.1) and (4.2) we get the simple condition

(det V (0)
1 − 1

4 )(det V (0)
2 − 1

4 )− | det E| � 0. (5.16)

Due to the phase choice (5.8), the determinant of the entanglement matrix is

det E = − 1
4 [sinh(2r)]2(0(p)(0(q). (5.17)

Therefore we get the necessary and sufficient condition for output inseparability

(sinh(2r))2 > (sinh(2rs))
2 := 4n̄1n̄2(n̄1 + 1)(n̄2 + 1)

(0(p)(0(q)
(5.18)

which holds whatever the input is squeezed or unsqueezed. We compare the condition assuring
inseparability, equation (5.18), to the straightforward one for nonclassicality arising from
equation (5.14),

(sinh(2r))2 > (sinh(2rc))
2 = 4[(σ0(q2, q2))

2 − 1
4 ][(σ0(q1, q1))

2 − 1
4 ]

[(0(q)]2
. (5.19)

The result is

rc � rs � rth. (5.20)

An immediate specialization of equation (5.18) to the case of thermal input gives for
the inseparability the same threshold gain (5.15) as for nonclassicality. According to the
inequalities (5.20), any amount of squeezing in the input states decreases the value of gain
allowing for output inseparability.

5.3. 2-entropy inequality

In [13, 14] it is discussed the possibility of defining inseparability in terms of violation of
2-entropy inequality

S2(ρ) � S2(ρj ) (j = 1, 2). (5.21)

In equation (5.21) the 2-entropy

S2(ρ) := − ln[Tr(ρ2)], (5.22)

of the whole system has to be greater than that of its two parts. In the two-dimensional case
the 2-entropy inequality holds for all separable states and is violated for all pure states [13].
However, in the mixed-state case, the violation of inequality (5.21) was shown to be a sufficient
but not a necessary condition for inseparability [13]. Violation of the 2-entropy inequality is
written using equation (5.22) as

Tr (ρ2) � Tr (ρ2
j ) (j = 1, 2). (5.23)

The inequality (5.23) is in fact an expression of the following statement: a two-component
state is inseparable if it is purer than any of its reductions [13].

By applying inequality (5.23) we will find the threshold gain of theSU(1, 1) interferometer
above which the output Gaussian state is inseparable. We take advantage here of the simple
relation between the degree of purity of a Gaussian state and the determinant of the covariance
matrix. In the two-mode case we use equation (2.18) while for a single-mode state we have
Tr (ρ2) = [2

√
det V]−1. The condition (5.23) is simply

det Vj > 4 det V (j = 1, 2). (5.24)
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By inserting the above equations (4.1) and (4.2) and using the parametrization (5.8) we get the
inseparability condition

(sinh(2r))2 > (sinh(2re))
2 := 2

(0(q)(0(p)

[
M +

N 2

(0(q)(0(p)

−|N |
(

1 +
2M

(0(q)(0(p)
+

N 2

((0(q)(0(p))2

)1/2]
(5.25)

where

M := 8(n̄1 + 1
2 )

2(n̄2 + 1
2 )

2 − (n̄1 + 1
2 )

2 − (n̄2 + 1
2 )

2 (5.26)

N := (n̄1 + 1
2 )

2 − (n̄2 + 1
2 )

2. (5.27)

A comparison between the inseparability condition arising from the violation of the 2-entropy
inequality, equation (5.25), and that obtained using the Peres–Simon criterion, equation (5.18),
yields the result

rs � re. (5.28)

Therefore, in the case of Gaussian states discussed here, the Horodecki’s statement proves
to be more restrictive than Peres criterion, being a sufficient condition for inseparability.
Equation (5.28) becomes an equality if and only if one of the reduced input states is pure.
If, for example, n̄1 = 0 we get rc = rs = re = 0.

6. Conclusions

In this paper we have examined the problem of inseparability of mixed two-mode Gaussian
states obtained as output of a SU(1, 1) interferometer. We have found the following features:

• A squeezed (nonclassical) input generates a nonclassical two-mode output state for any
gain.

• A classical input at one of the ports leads to a nonclassical two-mode output provided that
the gain of the interferometer exceeds the threshold (5.14), which depends on the initial
squeezing properties.

• The onset gain for inseparability is greater than that for nonclassicality. However, in the
important case of a thermal input nonclassicality and inseparability have the same range
of gain.

• Violation of the 2-entropy inequality proves to be a sufficient but not a necessary condition
for inseparability.

• Above the threshold (5.18), the SU(1, 1) interferometer is a device that produces
nonseparable (entangled) two-mode mixed states.
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